先进制造学院

环境工程

猜您喜欢

当前位置: 首页 > 师资队伍 > 生物与环境工程系 > 环境工程 > 联培 > 正文

联培

梁旭军

文章来源:  发布时间:2022-08-29  阅读次数:

姓名 梁旭军

性别

系别 生物与环境工程系

学位 工学博士

职称 副教授

职务 环境科学专业副主任

详细资料

联系方式:15013030115

通讯地址:福建省泉州市丰泽区东海大街398号

邮 编:362000

Email:liangxj@qztc.edu.cn


主要学历及工作经历

2021.08-至今泉州师范学院

2020.07-2020.09博士后美国密歇根大学-安娜堡分校

2018.03-2020.06博士后美国橡树岭国家实验室

2017.06-2018.02博士后暨南大学

2014.11-2016.10联培博士法国原子能委员会

2010.09-2017.03博士(硕博连读)华南理工大学


主要学术及社会兼职

Journal of Hazardous Materials Advances Special Issue的客座编辑、福建省环保产业协会专家库成员、泉州市科技特派员


研究领域

多年来一直从事有机和重金属污染水体和土壤的修复与评估、农田土壤改良、重金属元素生物地球化学循环及其与碳氮磷硫循环的耦合关系等方面的研究,重点研究基于两亲分子强化的微生物和植物修复技术及其在有机和重金属污染物跨膜运输中的作用、重金属汞的微生物甲基化与去甲基化机制。


承担科研课题情况

1. 国家自然科学基金青年基金,真菌型阴离子表面活性剂修复多环芳烃与重金属复合污染土壤的机理研究(No. 42007107),2021.01-2022.12,在研,主持

2.泉州师范学院青年教师基金,泉州典型流域中汞的生物地球化学行为研究,2022.01-2025.12,在研,主持

3.中国博士后科学基金,酸性槐糖脂修复有机-无机复合污染土壤的机制与风险(2017M622906),2017.11-2020.12,结题,主持


出版著作和论文

论文

1.X.J. Liang, N.L. Zhu, A. Johs, H.M. Chen, D.A. Pelletier, L.J. Zhang, X.X. Yin, Y.X. Gao, J.T. Zhao*, B.H. Gu. (2022). Mercury reduction, uptake, and species transformation by freshwater alga Chlorella vulgaris under sunlit and dark conditions. Environ. Sci. Technol., 56: 4961-4969.

2.D. Peng, W.J. Li, X.J. Liang*, L.C. Zheng, X.T. Guo*. (2023). Enzymatic preparation of hydrophobic biomass with onepot synthesis and the oil removal performance. J. Environ. Sci., 124: 105-116.

3.X.X. Yin#, L.H. Wang#, X.J. Liang#, L.J. Zhang, J.T. Zhao, B.H. Gu*. Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. J. Hazard. Mater., 433: 128835.

4.Y.F. Wei, X.J. Liang*, H.H. Wu, J.M. Cen, Y.M. Ji. (2021). Efficient phosphate removal by dendrite-like halloysite-zinc oxide nanocomposites prepared via noncovalent hybridization. Appl. Clay Sci., 213: 106232.

5.C.S. Kang#, X.J. Liang#, P. Dershoitz, W.Y. Gu, A. Schepers, A. Flatley, J. Lichtmanneger, H. Zischka, L.J. Zhang, X. Lu, B.H. Gu, J.C. Ledesma, D.J. Pelger, A.A. DiSpirito, J.D. Semrau*. (2021). Evidence for methanobactin “Theft” and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. ISME. J., 16: 211-220.

6.X.J. Liang#, X. Lu#, J.T. Zhao, L.Y. Liang, E. Zeng, B.H. Gu*. (2019). A stepwise reduction approach reveals mercury competitive binding and exchange reactions within natural organic matter and mixed organic ligands. Environ. Sci. Technol., 53: 10685-10694.

7.X. Lu#, J.T. Zhao#, X.J. Liang#, L.J. Zhang, Y.R. Liu, X.P. Yin, X.K. Li, B.H. Gu*. (2019). The application and potential artifacts of Zeeman cold vapor atomic absorption spectrometry in mercury stable isotope analysis. Environ. Sci. Technol. Lett., 6: 165-170.

8.X.J. Liang, C.L. Guo*, Y.F. Wei, S.S. Liu, X.Y. Yi, G.N. Lu, Z. Dang. (2018). Cosolubilization of phenanthrene and pyrene in single and binary surfactant micelles: experimental and molecular dynamics simulations studies. J. Mol. Liq.,263: 1-9.

9.X.J. Liang, C.L. Guo, C.J. Liao, S.S. Liu, L.Y. Wick, D. Peng, X.Y. Yi, G.N. Lu, H. Yin, Z. Lin, Z. Dang*. (2017). Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of PAH-contaminated environments. Environ. Pollut., 225: 129-140.

10.X.J. Liang, M. Marchi, C.L. Guo, Z. Dang, S. Abel*. (2016). Atomistic simulation of solubilization of polycyclic aromatic hydrocarbons in a sodium dodecyl sulfate micelle. Langmuir, 32: 3645–3654.

11.X.J. Liang, C.L. Guo, Y.F. Wei, W.J. Lin, X.Y. Yi, G.N. Lu, Z. Dang*. (2016). Cosolubilization synergism occurrence in codesorption of PAH mixtures during surfactant-enhanced remediation of contaminated soil. Chemosphere, 144: 583-590.

12.X.J. Liang, M.L. Zhang, C.L. Guo*, S. Abel, X.Y. Yi, G.N. Lu, C. Yang, Z. Dang*. (2014). Competitive solubilization of low-molecular-weight polycyclic aromatic hydrocarbons mixtures in single and binary surfactant micelles. Chem. Eng. J., 244: 522-530.

13.Y.L. Zhang, L.J. Zhang, X.J. Liang, Q.Y. Wang, X.P. Yin, E.M. Pierce, B.H. Gu. (2022). Competitive exchange between divalent metal ions [Cu(II), Zn(II), Ca(II)] and Hg(II) bound to thiols and natural organic matter. J. Hazard. Mater., 424: 127388.

14.L.J. Zhang, X.J. Liang, Q.Y. Wang, Y.L. Zhang, W. Zheng, X. Lu, E.M. Pierce, B.H. Gu*. (2020). Isotope exchange between mercuric [Hg(II)] chloride and Hg(II) bound to minerals and thiolate ligands: Implications for enriched isotope tracer studies. Geochim. Cosmochim. Acta., 292: 468-481.

15.Q.Y. Wang, L.J. Zhang, X.J. Liang, X.P. Yin, Y.L. Zhang, W. Zheng, E.M. Pierce, B.H. Gu*. (2020). Rates and dynamics of isotope exchange between dissolved elemental Hg(0) and Hg(II)-bound to organic and inorganic ligands. Environ. Sci. Technol., 54: 15534-15545.

16.Y.Y. Li, N.L. Zhu, X.J. Liang, X. Bai, L.R. Zheng, J.T. Zhao*, Y.F. Li, Z.Y. Zhang, Y.X. Gao. (2020). Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg(II) in soybean (Glycine max). Environ. Sci.: Nano, 7: 1807-1817.

17.J.T Zhao, X.J. Liang, N.L. Zhu, L.M. Wang, Y.Y. Li, Y.Y. Li, L.R. Zheng, Z.Y. Zhang, Y.X. Gao*, Z.F. Chai. (2020). Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environ. Sci.: Nano, 7: 1115-1125.

18.Y.X. Li, N.L. Zhu, X.J. Liang, L.R. Zheng, C.X. Zhang, Y.F. Li, Z.Y. Zhang, Y.X. Gao, J.T. Zhao*. (2020). A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicol. Environ. Saf., 189: 109955.

19.X.X. Yin, L.H. Wang, L.J. Zhang, H.M. Chen, X.J. Liang, X. Lu, A. DiSpirito, J.D. Semrau, and B.H. Gu*. (2020). Synergistic effects of a chalkophore, methanobactin, on microbial methylation of mercury. Appl. Environ. Microbiol., 86: e00122-20.

20.X. Bai, Y.Y. Li, X.J. Liang, H. Li, J.T. Zhao*, Y.F. Li, Y.X. Gao. (2019). Botanic metallomics of mercury and selenium: current understanding of mercury-selenium antagonism in plant with the traditional and advanced technology. Bull. Environ. Contam. Toxicol., 102: 628-634.

21.Q.Y. Lu, K.Y. Chen, Y. Long, X.J. Liang, B.Y. He, L.H. Yu, J.S. Ye*. (2019). Benzo(a)pyrene degradation by cytochrome P450 hydroxylase and the functional metabolism network of Bacillus thuringiensis. J. Hazard. Mater., 366: 329-337.

22.F.J. Wu, C.L. Guo*, S.S. Liu, X.J. Liang, G.N. Lu, Z. Dang. (2019). Pyrene degradation by Mycobacterium gilvum: metabolites and proteins involved. Water, Air, Soil Pollut., 230: 67.

23.H.L. Zhang, J.S. Ye, H.M. Qin, X.J. Liang, Y. Long*. (2019). Molecular recognition and cell surface biochemical response of Bacillus thuringiensis on triphenyltin. Processes, 7: 358.

24.Y.F. Wei, X.J. Liang, C.L. Guo*, Z. Dang. (2018). Competitive partitioning of phenanthrene in carbon nanomaterials and anionic and nonionic micelles. Colloids Surf., A, 553: 612-617.

25.D. Peng*, O.Y. Fan, X.J. Liang, X.T. Guo, Z. Dang, L.C. Zheng. (2018). Sorption of crude oil by enzyme-modified corn stalk vs. chemically treated corn stalk. J. Mol. Liq.,255: 324-332.

26.S.S. Liu, C.L. Guo*, Z. Dang, X.J. Liang. (2017). Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicol. Environ. Saf., 137: 256-264.

27.W.J. Lin, C.L. Guo*, H. Zhang, X.J. Liang, Y.F. Wei, G.N. Lu, Z. Dang. (2016). Electrokinetic-enhanced remediation of phenanthrene-contaminated soil combined with Sphingomonas sp. GY2B and Biosurfactant. Appl. Biochem. Biotechnol., 178: 1325-1338.

28.C.J. Liao, W.D. Xu, G.N. Lu*, F.C. Deng, X.J. Liang, C.L. Guo, Z. Dang*. (2016). Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecol. Eng., 92: 10-17.

29.J.H. Li, C.L. Guo*, C.J. Liao, M.L. Zhang, X.J. Liang, G.N. Lu, C. Yang, Z. Dang. (2016). A Bio-hybrid material for adsorption and degradation of phenanthrene: bacteria immobilized on sawdust coated with a silica layer. RSC Advances, 6: 107189-107199.

30.Y.F. Wei, X.J. Liang, W.J. Lin, C.L. Guo*, Z. Dang*. (2015). Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants. Chem. Eng. J., 264: 807-814.

31.Y.F. Wei, X.J. Liang, L. Tong, C.L. Guo*, Z. Dang*. (2015). Enhanced solubilization and desorption of pyrene from soils by saline anionic–nonionic surfactant systems. Colloids Surf., A, 468: 211-218.

32.C.J. Liao, X.J. Liang, G.N. Lu*, C.J. Thai, W.D. Xu, C.L. Guo, C. Yang, Z. Dang. (2015). Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicol. Environ. Saf., 112: 1-6.

33.S.S. Liu, C.L. Guo*, X.J. Liang, F.J. Wu, Z. Dang. (2016). Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicol. Environ. Saf., 129: 210-218.

34.X.J. Yang, G.N. Lu*, R.R. Yin, X.J. Liang, Z. Dang*. (2015). Cosolubilization of 4,4′-dibromodiphenyl ether, naphthalene and pyrene mixtures in various surfactant micelles. Chem. Eng. J., 260: 74-82.

35.C.J. Liao, W.D. Xu, G.N. Lu*, X.J. Liang, C.L. Guo, C. Yang, Z. Dang*. (2015). Accumulation of hydrocarbons by maize (Zea mays L.) in remediation of soils contaminated with crude oil. Int. J. Phytoremediat., 17: 693-700.

36.张梦露,党志*,伍凤姬,梁旭军,郭楚玲,卢桂宁,杨琛. (2014). 利用流式细胞术研究鞘氨醇单胞菌GY2B降解菲过程中细菌表面特性的变化. 环境科学, 35: 1449-1456.

#共同第一作者;*通讯作者


专利

1. 钱莲文,梁旭军,李腾飞,杨航,陈晓峰,张薇. (2022).一种利用香料植物修复水体和土壤铅污染的方法. 申请号(202210431666.7)

获奖情况

国家留学基金委出国留学奖学金、福建省高层次人才C类人才、泉州市第三层次人才


指导硕士生研究方向

水土污染环境修复与环境生物地球化学

    上一篇:没有了!
  • 下一篇:杨大鹏